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Fisher, bound, and extreme physical information for dissipative processes
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In the present paper we discuss the possible form and meaning of Fisher, bound, and physical information in
some special cases. It seems to us that an unusual choice of bound information may describe the behavior of
dissipative processes.
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I. INTRODUCTION

Information has been found to play an increasingly imp
tant role in physics, mainly since Jaynes’ pioneering wo
@1#, which is a discussion of connection of informatio
theory and statistical mechanics. Knowledge of probabi
p—representing the observer’s state of knowledge about
system, rather than the state of the system itself—enable
to express the so-called Fisher information@2–7#. This is a
quality of an efficient measurement procedure, and it is a
a measure of the degree of system disorder, in other word
is a form of entropy,

I 5E ~“p!2

p
d3x. ~1!

Here,p denotes the probability density function for the noi
valuex, and“ is the gradient operator. Fisher found that it
often more convenient to calculate with a real amplitu
function q(x,t) @4#, where

p5
1

8
q2, ~2!

by which we can write the Fisher information

I 5
1

2E ~“q!2d3x. ~3!

Any measurement of physical parameters initiates a trans
mation of Fisher information. An information transitionJ
→I takes place, whereJ represents the physical effect.J is
the information that is intrinsic to the phenomenon. In ge
eral, the informationJ is identified by an invariance tha
characterizes the measured phenomenon. As a basic cas
consider

J5
1

2E q̇2d3x, ~4!
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where the dot denotes the time derivative. The possibility
some loss of information during the information transitio
suggests

I<J. ~5!

The principle of extreme physical information represe
a kind of game between the observer and nature. The
server wants to maximizeI while nature wants to minimize
it. The physical informationK is

K5I 2J

5
1

2E ~“q!2dx2
1

2E q̇2d3x

5E S 1

2
~“q!22

1

2
q̇2Dd3x, ~6!

which is a loss of information. Considering the time evol
tion of the process, it has an extremum, which formulate
variational principle for finding theq. From this equation we
can read the so-called Lagrange density funtion@8#,

L5
1

2
~“q!22

1

2
q̇2, ~7!

which is the integrand of the above equation. The equatio
motion can be deduced from Hamilton’s principle~the action
S5*Ld3xdt5extremum) by the help of calculus of varia
tions ~i.e., dS50). From the extremization of functionalS,
we can obtain a partial differential equation as Eul
Lagrange equation,

q̈2Dq50, ~8!

which is the well-known wave equation. (D denotes the
Laplace operator.!

We restrict our attention and examination to the abo
described basic case. Detailed examination of the princ
of extreme physical information and several examples can
found in Refs.@2–7#. Special examples, applications, an
advanced results from the standpoint of information can
found for Higgs mass generation@9#, physical properties of a
generally decoherent system@10#, a Schro¨dinger link be-
tween nonequilibrium thermodynamics and Fisher inform

u,
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tion @11#, nonequilibrium thermodynamics and Fisher info
mation @12#, and a great number of other papers.

II. ANOTHER CHOICE OF PROBABILITY

We can find the probabilityp in a quadratic form like in
Eq. ~2!, but we give it by a different inner function. Now, le
the probability be proportional to the square of gradient o
function w(x,t),

p5
1

8
~“w!2, ~9!

wherew is a generalized potential function.~We point out an
interesting application of this function for the case of dis
pative processes, e.g., heat conduction. This potential fu
tion was originally introduced to apply the Hamilton’s prin
ciple and Lagrange formalism for irreversible proces
@13#.! Using Eqs.~1! and ~9! the Fisher information can b
given by

I 5
1

2E ~Dw!2d3x. ~10!

Similar to the previous example, we write the bound inf
mationJ in the form

J5
1

2
lE ẇ2d3x, ~11!

wherel is a constant parameter. The extreme physical in
mationK can be formulated,

K5I 2J5E S 1

2
~Dw!22

1

2
lẇ2Dd3x, ~12!

from which the Lagrange density function is obtained,

L5
1

2
~Dw!22

1

2
lẇ2. ~13!

After the variation, the equation of motion can be calcula
as Euler-Lagrange equation

lẅ1DDw50. ~14!

What mayl be? If l51 ~the choice of other positive num
ber gives physically the same result!,

J5
1

2E ẇ2d3x. ~15!

In this case the Lagrange density function is

L5
1

2
~Dw!22

1

2
ẇ2, ~16!

by which the field equation can be calculated,

ẅ1DDw50. ~17!
01612
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This equation is valid for free oscillations of a thin plate
rod @14#. These waves are fundamentally different from tho
in a medium in all directions. Considering a monochroma
elastic wave„w;exp@i(kx2vt)#…, we obtain the dispersion
relation in the formv5k2. The propagating wave is no
dissipative in spite of the special behavior of dispersion
lation. If l521, then the bound information is alway
negative,

J52
1

2
ẇ2. ~18!

Here, we can see that the conditionI<J @see Eq.~5!# is
immediately violated. It is not clear what it means at all, b
we can examine the mathematical results that follow fr
this assumption. The Lagrange density function can be w
ten as

L5
1

2
~Dw!21

1

2
ẇ2, ~19!

which is the basic funtion of diffusive processes~e.g., linear
heat conduction! in the field theory of nonequilibrium ther
modynamics@15,16#. This proves that there exists such
physical system where this choice ofJ is relevant. We obtain
a biparabolic differential equation as Euler-Lagrange eq
tion,

ẅ2DDw50. ~20!

As it has been shown~in Refs. @15,16#!, a new quantity
T(x,t) can be introduced~this is the local equilibrium tem-
perature, but it may be the concentration, etc.!,

T52ẇDw. ~21!

Equations~20! and ~21! are equivalent to

Ṫ2DT50, ~22!

which is the Fourier equation. The diffusive processes
dissipative, the observed system tends to the static stat
this the meaning of the negative bound information or is i
fortunate accident? We have not known it yet. Here, one
ask whether it was possible to use Eqs.~15!–~17! ~avoiding
the assumption of negativeJ) to obtain the equation of hea
conduction by a different substitution. It is easy to see t
none of the combinations, i.e.,T52ẇ1Dw or T5ẇ
2Dw, can give Eq.~22!. To understand the meaning of th
different possibilities of choice of sign ofJ, we turn back to
the basic problem, but we write

J52
1

2E q̇2d3x. ~23!

The Lagrange density function can be obtained as

L5
1

2
~“q!21

1

2
q̇2, ~24!
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by which we calculate the equation of motion~an elliptic
differential equation!

q̈1Dq50. ~25!

The solution of this equation can be calculated

q5Ae2bxeivt1Be2kteikx, ~26!

which includes the dissipation in the second term. (A, B, b,
v, k, andk are constant parameters.! It seems to us, similar
s

01612
to the heat conduction, that the negative bound informatioJ
may have a connection with the dissipation.

III. CONCLUSION

In the case of dissipative processes the bound informa
J is negative. This is a rather strange thing for the first vie
however, it may mean that all physical information will b
lost in the process. This comes from the definition ofK;
moreover, this may show the connection of dissipation a
information loss. During the process the system tends to
equilibrium state, which means that more information can
be obtained about the phenomenon.
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