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Fisher, bound, and extreme physical information for dissipative processes
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In the present paper we discuss the possible form and meaning of Fisher, bound, and physical information in
some special cases. It seems to us that an unusual choice of bound information may describe the behavior of
dissipative processes.
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[. INTRODUCTION where the dot denotes the time derivative. The possibility of
some loss of information during the information transition
Information has been found to play an increasingly impor-suggests

tant role in physics, mainly since Jaynes’ pioneering work
[1], which is a discussion of connection of information I<J. (5)
theory and statistical mechanics. Knowledge of probability
p—representing the observer’s state of knowledge about the The principle of extreme physical information represents
system, rather than the state of the system itself—enables @skind of game between the observer and nature. The ob-
to express the so-called Fisher informati@-7]. This is a  server wants to maximizewhile nature wants to minimize
quality of an efficient measurement procedure, and it is alsd. The physical informatiorK is
a measure of the degree of system disorder, in other words, it

is a form of entropy, K=1-J
1 1(.
Vp)? _- 2qv_ — | 5243
I:J—( :)O) d3x. (1) 2J(Vq) dx 2fqu
— 1 V 2_ 1 2 d3 6
Here,p denotes the probability density function for the noise = E( a) Eq X, (6)

valuex, andV is the gradient operator. Fisher found that it is
often more convenient to calculate with a real amplitudewnich is a loss of information. Considering the time evolu-

functionq(x,t) [4], where tion of the process, it has an extremum, which formulates a
variational principle for finding the. From this equation we
1, can read the so-called Lagrange density funfi®h
p=gd" ()
1 1.
_ = 2_ =02
L=5(Va)"=39% )

by which we can write the Fisher information

1 which is the integrand of the above equation. The equation of
= Ef (Vqg)2d3x. (3 motion can be deduced from Hamilton’s princigthe action
S=[Ld3xdt=extremum) by the help of calculus of varia-

) o tions (i.e., 6S=0). From the extremization of function&
Any measurement of physical parameters initiates a transfofye can obtain a partial differential equation as Euler-
mation of Fisher information. An information transitiah Lagrange equation

— 1| takes place, wheré represents the physical effedtis
the information that is intrinsic to the phenomenon. In gen- 4—Ag=0 ®)
eral, the informationJ is identified by an invariance that '
characterizes the measured phenomenon. As a basic case,

i Wich is the well-known wave equationA( denotes the
consider

Laplace operator.
We restrict our attention and examination to the above
J= EJ 243 described basic case. Detailed examination of the principle
= g-d®x, (4) oS .

2 of extreme physical information and several examples can be
found in Refs.[2-7]. Special examples, applications, and
advanced results from the standpoint of information can be
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tion [11], nonequilibrium thermodynamics and Fisher infor- This equation is valid for free oscillations of a thin plate or

mation[12], and a great number of other papers. rod[14]. These waves are fundamentally different from those
in a medium in all directions. Considering a monochromatic
Il. ANOTHER CHOICE OF PROBABILITY elastic wave(¢~exdi(kx—wt)]), we obtain the dispersion

_ o _ __relation in the formw=k?. The propagating wave is not
We can find the probability in a quadratic form like in  gjissjpative in spite of the special behavior of dispersion re-
Eq. (2), but we give it by a different inner function. Now, let |ation. If A= —1, then the bound information is always
the probability be proportional to the square of gradient of gyegative,
function ¢(x,t),
1 I=— 547 18
p=5(Ve)? ©) 2

. . . _ _ Here, we can see that the conditibsJ [see Eq.(5)] is
whereg is a generalized potential functiofiWe pointoutan jymedgiately violated. It is not clear what it means at all, but
interesting application of this function for the case of dissi-\yo can examine the mathematical results that follow from

pative processes, e.g., heat conduction. This potential funGpis assumption. The Lagrange density function can be writ-
tion was originally introduced to apply the Hamilton’s prin- o, 4

ciple and Lagrange formalism for irreversible processes

[13].) Using Egs.(1) and (9) the Fisher information can be 1 )
given by L= §(A<P)2+ E(PZ, (19
| = lf (Ap)2d3x. (100  Which is the basic funtion of diffusive processesg., linear
2 heat conductionin the field theory of nonequilibrium ther-

modynamics[15,16. This proves that there exists such a
physical system where this choice bis relevant. We obtain
a biparabolic differential equation as Euler-Lagrange equa-

Similar to the previous example, we write the bound infor-
mationJ in the form

1 _ tion,
J= E)\J ©2d3x, (12) .
¢e—AAp=0. (20)

where\ is a constant parameter. The extreme physical inforA
mationK can be formulated,

from which the Lagrange density function is obtained,

s it has been showtiin Refs.[15,16), a new quantity
T(x,t) can be introducedthis is the local equilibrium tem-
perature, but it may be the concentration, Jetc.

1 2 1. 2 3
E(A(p) _E)\(P d X, (12) .
T=—0pAo. (21

Equations(20) and (21) are equivalent to
1 1 . .
LIE(A(p)Z— E)\(pz. (13 T-AT=0, (22)

hich is the Fourier equation. The diffusive processes are

issipative, the observed system tends to the static state. Is
this the meaning of the negative bound information or is it a
fortunate accident? We have not known it yet. Here, one can
ask whether it was possible to use E@b)—(17) (avoiding
the assumption of negativ® to obtain the equation of heat
conduction by a different substitution. It is easy to see that
none of the combinations, i.eT=—¢+A¢ or T=¢

1., — A, can give Eq(22). To understand the meaning of the

J= 5] @dX. (19 different possibilities of choice of sign @ we turn back to
the basic problem, but we write

After the variation, the equation of motion can be calculate
as Euler-Lagrange equation

Ne+AAp=0. (14

What may\ be? IfA=1 (the choice of other positive num-
ber gives physically the same result

In this case the Lagrange density function is

1(.
J=— Ef q°d3x. (23)

1.
L==(Ag)%— 5902, (16)

N| -

The Lagrange density function can be obtained as
by which the field equation can be calculated,

L—1V 24 Lo 24
o+ AAG=0. (17) =3(Va)+ 305 (24
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by which we calculate the equation of motidan elliptic
differential equation

q+Aqg=0. (25)

The solution of this equation can be calculated

q=Ae P et4Be «lekx (26)

which includes the dissipation in the second terf. B, 3,
w, k, andk are constant parametertt seems to us, similar
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to the heat conduction, that the negative bound information
may have a connection with the dissipation.

IlI. CONCLUSION

In the case of dissipative processes the bound information
Jis negative. This is a rather strange thing for the first view,
however, it may mean that all physical information will be
lost in the process. This comes from the definition Kgf
moreover, this may show the connection of dissipation and
information loss. During the process the system tends to the
equilibrium state, which means that more information cannot
be obtained about the phenomenon.
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